Contents ## High-Speed Digital Design: A Handbook of Black Magic | 1 | Fundamentals1 | |---|---| | | 1.1 Frequency and Time1 1.2 Time and Distance6 1.3 Lumped Versus Distributed Systems7 1.4 A Note About 3 dB and RMS Frequencies8 1.5 Four Kinds of Reactance10 1.6 Ordinary Capacitance11 1.7 Ordinary Inductance17 1.8 A Better Method for Estimating Decay Time22 1.9 Mutual Capacitance25 1.10 Mutual Inductance29 | | 2 | High-Speed Properties of Logic Gates37 | | | 2.1 Historical Development of a Very Old Digital Technology37 2.2 Power39 2.3 Speed59 2.4 Packaging66 | | 3 | Measurement Techniques83 | | | 3.1 Rise Time and Bandwidth of Oscilloscope Probes83 3.2 Self-inductance of a Probe Ground Loop86 3.3 Spurious Signal Pickup from Probe Ground Loops92 3.4 How Probes Load Down a Circuit95 3.5 Special Probing Fixtures98 3.6 Avoiding Pickup from Probe Shield Currents104 3.7 Viewing a Serial Data Transmission System108 3.8 Slowing Down the System Clock110 3.9 Observing Crosstalk111 3.10 Measuring Operating Margins113 3.11 Observing Metastable States120 | | 4 | Transmission Lines133 | | | 4.1 Shortcomings of Ordinary Point-to-Point Wiring133 4.2 Infinite Uniform Transmission Line140 4.3 Effects of Source and Load Impedance160 4.4 Special Transmission Line Cases167 4.5 Line Impedance and Propagation Delay178 | | 5 | Ground Planes and Layer Stacking189 | | | 5.1 High-Speed Current Follows the Path of Least Inductance18 5.2 Crosstalk in Solid Ground Planes191 5.3 Crosstalk in Slotted Ground Planes194 5.4 Crosstalk in Cross-Hatched Ground Planes197 | | | 5.5 Crosstalk with Power and Ground Fingers199 5.6 Guard Traces201 5.7 Near-End and Far-End Crosstalk204 5.8 How to Stack Printed Circuit Board Layers212 | |----|--| | 6 | Terminations223 | | | 6.1 End Terminators223 6.2 Source Terminators231 6.3 Middle Terminators235 6.4 AC Biasing for End Terminators236 6.5 Resistor Selection239 6.6 Crosstalk in Terminators244 | | 7 | Vias249 | | | 7.1 Mechanical Properties of Vias249 7.2 Capacitance of Vias257 7.3 Inductance of Vias258 7.4 Return Current and Its Relation to Vias260 | | 8 | Power Systems263 | | | 8.1 Providing a Stable Voltage Reference263 8.2 Distributing Uniform Voltage268 8.3 Everyday Distribution Problems279 8.4 Choosing a Bypass Capacitor281 | | 9 | Connectors295 | | | 9.1 Mutual Inductance—How Connectors Create Crosstalk295 9.2 Series Inductance—How Connectors Create EMI300 9.3 Parasitic Capacitance—Using Connectors on a Multidrop Bus305 9.4 Measuring Coupling in a Connector309 9.5 Continuity of Ground Underneath a Connector312 9.6 Fixing EMI Problems with External Connections314 9.7 Special Connectors for High-Speed Applications316 9.8 Differential Signaling Through a Connector319 9.9 Power Handling Features of Connectors321 | | 10 | Ribbon Cables323 | | | 10.1 Ribbon Cable Signal Propagation324 10.2 Ribbon Cable Crosstalk329 10.3 Ribbon Cable Connectors336 10.4 Ribbon Cable EMI338 | | 11 | Clock Distribution341 | | | 11.1 Timing Margin341 11.2 Clock Skew343 11.3 Using Low-Impedance Drivers346 11.4 Using Low-Impedance Clock Distribution Lines348 11.5 Source Termination of Multiple Clock Lines350 | | | 11.6 Controlling Crosstalk on Clock Lines352 | |----|---| | | 11.7 Delay Adjustments353 | | | 11.8 Differential Distribution360 | | | 11.9 Clock Signal Duty Cycle361 | | | 11.10 Canceling Parasitic Capacitance of a Clock | | | Repeater362 | | | 11.11 Decoupling Clock Receivers from the Clock Bus364 | | 12 | Clock Oscillators367 | | | 12.1 Using Canned Clock Oscillators367 12.2 Clock Jitter376 | | | Collected References385 | | Α | Points to Remember389 | | В | Calculation of Rise Time399 | | С | MathCad Formulas409 | | | Index 441 |