

Shortline - 1

High-Speed Digital Design

It's the Risetime/Delay Ratio that Counts

Set nominal transmission line delay and risetime

<i>delay</i> := 10 ⁻⁹	ZS = 10	$RL = 1 \cdot 10^4$
risetime ≔ 2∙delay	<i>ZC</i> = 65	CL = 0

Scale both delay and risetime to see what happens

X1 := SYS3(delay, risetime) X2 := SYS3(delay·2, risetime·2) X3 := SYS3(delay·3, risetime·3)

ECL

Shortline - 3

High-Speed Digital Design

ECL

Unterminated line response Risetime set to 4, 5 and 6 times transmission line delay

Shortline - 4

High-Speed Digital Design

ECL

Unterminated line response Risetime set to 4, 5 and 6 times transmission line delay BLOWUP of vertical axis

Shortline - 5

High-Speed Digital Design

TTL/CMOS

Unterminated line response Risetime set to 0, 2 and 3 times transmission line delay

 $ZS = 30 \qquad RL = 1 \cdot 10^4$

ZC = 65 CL = 0

Shortline - 6

High-Speed Digital Design

TTL/CMOS

Unterminated line response Risetime set to 4, 5 and 6 times transmission line delay

Shortline - 7

High-Speed Digital Design

TTL/CMOS

Unterminated line response Risetime set to 4, 5 and 6 times transmission line delay BLOWUP of vertical axis

Shortline - 8

High-Speed Digital Design

TTL/CMOS with Capacitive Load (20 pF)

Unterminated line response Risetime set to 4, 5 and 6 times transmission line delay BLOWUP of vertical axis

$$ZS = 30$$
 $RL = 1 \cdot 10^4$
 $ZC = 65$ $CL = 2 \cdot 10^{-11}$

Shortline - 9

High-Speed Digital Design